Contents

Our Impact 3
Our Audience 4
Crib Sheet 5
Crib Sheet 6
Email Marketing 7
Creative Solutions 8
Lead Generation 9
Lead Library 10
Technology Guides 11
Feature Folds 12
Explainer Articles 13
Science Milestones 14
Posters 15
Webinars 16
Custom Articles 17
Podcasts 18
Editorial Calendar 19
2024 CSD Content Calendar 20
Digital Solutions 26
Banner Ads 27
Newsletters/Science Spotlight 28
DDN Dose 29
Print Solutions 30
DDN Magazine 31
Print Schedule 32
Tech Notes 33
Contact Us 34
Production Specs 35
DDN tells the stories behind the sciences to a focused audience in the drug discovery, drug development, and clinical research markets.

Now is a fantastic time to partner with DDN.

Our Impact

DDN tells the stories behind the sciences to a focused audience in the drug discovery, drug development, and clinical research markets.

Now is a fantastic time to partner with DDN.

4.1 million+
newsletters received by subscribers

31% growth
in less than 12 months

2 million+
emails sent to subscribers

3rd party
subscribers
83,409
24.33%
average open rate

62,317
newsletter subscribers
18.2%
average open rate

35,000
print subscribers

15,000 20,000
print digital

delivered
15,000
leads in less than 12 months

*Publisher’s own data taken from May 2023 issue.
Our readers are your customers. We offer a variety of ways to share your message with our audience, from traditional print and banner ads to newsletters, graphics, articles, and webinars. Check it out!

95% of DDN subscribers are involved in some aspect of the purchasing decisions for new products and technologies in the lab.

- based on data from a 2023 Reader Survey

DDN subscriber job titles and positions

- Researcher/Staff Scientist: 38%
- Lab Director/Lab Manager/Dept Manager: 25%
- Professor/Assistant/Associate Professor: 17%
- Executive Management (CEO/Pres/VP): 12%
- Other: 8%

DDN subscriber institution types

- Commercial/Industrial Laboratory: 43%
- Academic Institution: 31%
- Hospital, Medical Center, Clinical Laboratory: 16%
- Government Laboratory (Federal, State, or Local): 4%
- Other: 5%

- based on data from a 2023 Reader Survey

DDN geographical breakdown

- North America: 74%
- Europe, Middle East and Africa: 18%
- Asia-Pacific: 7%
- Rest of the world: 1%

- based on data from a 2023 Reader Survey

“I like that the content is informative and scientific and covers a range of interesting topics. I also like that the information is presented in a way that is easily understood for topics I do not have much experience with.”

- Senior Product Manager, MOBIlion Systems
Topics We Cover

This list represents many of the areas covered by DDN.
If you want to cover a topic but don’t see it on the list, ask us!

We will be happy to help match your topic with our audience’s interests!
<table>
<thead>
<tr>
<th>TOOLS & TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automation</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>Bioinformatics</td>
</tr>
<tr>
<td>Bioprocessing</td>
</tr>
<tr>
<td>Cell Imaging</td>
</tr>
<tr>
<td>Chromatography/Separation</td>
</tr>
<tr>
<td>Crystallography</td>
</tr>
<tr>
<td>Drug-Target Interactions</td>
</tr>
<tr>
<td>Electrophoresis</td>
</tr>
<tr>
<td>Flow Cytometry</td>
</tr>
<tr>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>Glycan Analysis</td>
</tr>
<tr>
<td>Glycoproteomics</td>
</tr>
<tr>
<td>ICP-MS/ICP-QQQ</td>
</tr>
<tr>
<td>ICP-OES</td>
</tr>
<tr>
<td>Imaging/Microscopy</td>
</tr>
<tr>
<td>Immunoassays</td>
</tr>
<tr>
<td>IR/FTIR</td>
</tr>
<tr>
<td>Label Free Quantification</td>
</tr>
<tr>
<td>Lipidomics</td>
</tr>
<tr>
<td>Liquid Chromatography/</td>
</tr>
<tr>
<td>HPLC/uHPLC</td>
</tr>
<tr>
<td>Liquid Handling</td>
</tr>
<tr>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>MALDI Imaging</td>
</tr>
<tr>
<td>Metabolomics</td>
</tr>
<tr>
<td>Microarrays</td>
</tr>
<tr>
<td>Microplate Analysis</td>
</tr>
<tr>
<td>Microbial Metabolites</td>
</tr>
<tr>
<td>Microfluidics</td>
</tr>
<tr>
<td>Microphysiological Systems</td>
</tr>
<tr>
<td>Microscopy</td>
</tr>
<tr>
<td>Multiomics</td>
</tr>
<tr>
<td>Next Generation Sequencing</td>
</tr>
<tr>
<td>Nucleic Acids Isolation and</td>
</tr>
<tr>
<td>Purification</td>
</tr>
<tr>
<td>Nuclear Magnetic Imaging</td>
</tr>
<tr>
<td>Organ-on-a-Chip</td>
</tr>
<tr>
<td>PCR/RT-PCR</td>
</tr>
<tr>
<td>Peptide Mapping</td>
</tr>
<tr>
<td>Proteomics</td>
</tr>
<tr>
<td>RNA sequencing</td>
</tr>
<tr>
<td>Sample Prep</td>
</tr>
<tr>
<td>Single Cell RNA Sequencing</td>
</tr>
<tr>
<td>Spatial Transcriptomics</td>
</tr>
<tr>
<td>Spectroscopy</td>
</tr>
<tr>
<td>Structural Biology</td>
</tr>
<tr>
<td>Systems Biology</td>
</tr>
<tr>
<td>Transcriptomics</td>
</tr>
<tr>
<td>UV/VIS Spectroscopy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI/Machine Learning</td>
</tr>
<tr>
<td>Big Data</td>
</tr>
<tr>
<td>Bioinformatics</td>
</tr>
<tr>
<td>Chromatography Data Systems (CDS)</td>
</tr>
<tr>
<td>Cloud Computing</td>
</tr>
<tr>
<td>Data Compliance</td>
</tr>
<tr>
<td>Data Integrity</td>
</tr>
<tr>
<td>Data Reproducibility</td>
</tr>
<tr>
<td>Informatics & Software</td>
</tr>
<tr>
<td>Lab of the Future/Lab 4.0</td>
</tr>
<tr>
<td>LIMS & ELN</td>
</tr>
<tr>
<td>Systems Biology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INFECTIOUS DISEASE, MICROBIOLOGY, VACCINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
</tr>
<tr>
<td>Common Cold</td>
</tr>
<tr>
<td>COVID-19</td>
</tr>
<tr>
<td>Dengue</td>
</tr>
<tr>
<td>E.coli</td>
</tr>
<tr>
<td>Fungi</td>
</tr>
<tr>
<td>Hepatitis</td>
</tr>
<tr>
<td>HIV/AIDS</td>
</tr>
<tr>
<td>Infectious Diseases</td>
</tr>
<tr>
<td>Influenza</td>
</tr>
<tr>
<td>Malaria</td>
</tr>
<tr>
<td>Metagenomics</td>
</tr>
<tr>
<td>Metatranscriptomics</td>
</tr>
<tr>
<td>Microbiome</td>
</tr>
<tr>
<td>Mononucleosis</td>
</tr>
<tr>
<td>Parasite</td>
</tr>
<tr>
<td>Transmission</td>
</tr>
<tr>
<td>Tuberculosis</td>
</tr>
<tr>
<td>Vaccine Delivery</td>
</tr>
<tr>
<td>Vaccine Development</td>
</tr>
<tr>
<td>Virology</td>
</tr>
<tr>
<td>Virus-like particles</td>
</tr>
<tr>
<td>Viruses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEUROSCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrophysiology</td>
</tr>
<tr>
<td>Neural Circuits & Systems</td>
</tr>
<tr>
<td>Neurodegeneration & Aging</td>
</tr>
<tr>
<td>Neurogenomics</td>
</tr>
<tr>
<td>Neuroimaging</td>
</tr>
<tr>
<td>Neurotechnology</td>
</tr>
<tr>
<td>Psychedelics</td>
</tr>
<tr>
<td>Psychology & Psychiatry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GENOMICS/GENETICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylation</td>
</tr>
<tr>
<td>Bisulfite Sequencing</td>
</tr>
<tr>
<td>CRISPR Screening</td>
</tr>
<tr>
<td>CRISPR/Cas9</td>
</tr>
<tr>
<td>CRISPRa</td>
</tr>
<tr>
<td>CRISPRi</td>
</tr>
<tr>
<td>DNA sequencing</td>
</tr>
<tr>
<td>Epigenetics</td>
</tr>
<tr>
<td>Expression Profiling</td>
</tr>
<tr>
<td>Functional Genomics</td>
</tr>
<tr>
<td>Gene Drives</td>
</tr>
<tr>
<td>Gene Expression</td>
</tr>
<tr>
<td>Gene Imprint</td>
</tr>
<tr>
<td>Genetic Engineering</td>
</tr>
<tr>
<td>Genome Editing</td>
</tr>
<tr>
<td>Genomic Screening</td>
</tr>
<tr>
<td>Genomics</td>
</tr>
<tr>
<td>Genotyping</td>
</tr>
<tr>
<td>GWAS</td>
</tr>
<tr>
<td>Histone Modifications</td>
</tr>
<tr>
<td>Methylation</td>
</tr>
<tr>
<td>Microarrays</td>
</tr>
<tr>
<td>Next Generation Sequencing</td>
</tr>
<tr>
<td>Noncoding</td>
</tr>
<tr>
<td>Nucleic Acids/Oligos</td>
</tr>
<tr>
<td>Oligonucleotides</td>
</tr>
<tr>
<td>PCR</td>
</tr>
<tr>
<td>qRT-PCR</td>
</tr>
<tr>
<td>RNA Interference</td>
</tr>
<tr>
<td>RNA Sequencing</td>
</tr>
<tr>
<td>RNA-Seq</td>
</tr>
<tr>
<td>RT-PCR</td>
</tr>
<tr>
<td>Single Cell Sequencing</td>
</tr>
<tr>
<td>Single Nucleotide</td>
</tr>
<tr>
<td>Polymorphism (SNP)</td>
</tr>
<tr>
<td>Small Interfering RNA (siRNA)</td>
</tr>
<tr>
<td>Synthetic Biology</td>
</tr>
<tr>
<td>TALEN</td>
</tr>
<tr>
<td>TALE</td>
</tr>
<tr>
<td>Transcriptomics</td>
</tr>
<tr>
<td>Zinc Finger Nuclease (ZFN)</td>
</tr>
</tbody>
</table>

“I appreciate the clarity and accessibility of DDN’s content. The well-presented materials are not only easy to understand but also enhance the learning experience. The diverse range of resources, including webinars, podcasts, and other materials, has been instrumental in keeping me informed about the latest developments in the field.”

- Priscila Yamamoto, PhD student, University of Florida
Nov 14, 2023 - AAPS PharmSci360 contest winner
Our subscribers are your customers.

With an average open rate of 24.33%, email marketing with DDN provides a reliable form of communication between your brand and our subscribers (your customers).

- Targeted and personalized content
- Build excitement
- Boost sales
- Increase traffic to your website
- Build credibility
- Brand recognition

2 million+
emails sent to subscribers

83,409
engaged 3rd party opt-in subscribers

Customized emails created by DDN see a
90%
increase in ad clicks

24.33%
average open rate

CUSTOM EMAIL solutions available

DDN’s database is GDPR compliant

DRUGDISCOVERYNEWS.COM | 7
"I enjoy my account manager, and DDN has good options for marketing and demand generation."

- Director of Technical Marketing, Quantum Si
Lead Generation
Discover our options

Multisponsored options
- Explainer Articles
- Science Milestones
- Posters
- Webinars
- Technology guides

Content we create for you
- Posters
- Technical Guides
- Custom Articles
- Explainer Articles
- Science Milestones
- Feature Folds

Your content
- eBooks
- Infographics
- White Papers
- App Notes

Customer experience package
- Full page tab ad
- Receive feedback on your campaign
- Ad experience survey

Lead library
- Explore the DDN lead library
- Select a piece of content
- Collect leads

View the multisponsored topics in our editorial calendar.
View examples in our custom content gallery.
We’ll help you select content that will resonate with our audience.
Receive up to 49 leads per package.
Discover more details on the following page.

15,000
leads delivered in less than 12 months

“When it comes to lead generation in your target market, Drug Discovery News delivers. The team is responsive and incredible to work with. We look forward to working with them on future campaigns.”

- VP Commercial Marketing, DNA Script
Follow our 4-step Process

Quickly promote leads with engaging content created by our team!

STEP 1: Pick your topic

Select content from our library that will attract the audience you want to reach.

STEP 2: Inform us of your lead goals

Inform us of your lead goals, including the quantity and type of leads required for each content piece (e.g., basic, targeted, sales qualified, or a mix of leads).

STEP 3: Send us your logo

Forward us your logo and we’ll add it to the registration page.

STEP 4: We’ll collect leads

Our team will begin generating your leads through targeted promotion to your desired audience until we reach your lead goal.

DDN’s database is GDPR compliant
Technology Guide

DDN’s Technology Guides provide the information scientists need to get started with new instruments, methods, and services.

Each Technology Guide includes the following content pieces:

- An introduction to the technology, including the top factors that new customers should consider when introducing your technology into their labs
- A graphical overview of the technique
- A table listing the key resources and products
- A troubleshooting Q&A article based on an interview with a product expert
Single-nucleotide polymorphisms (SNPs) occur where a single base pair at a specific locus differs from the standard sequence. The SNP might relate to disease susceptibility, pathways of disease, or efficacy of specific drugs. Identifying SNPs is useful for improving our understanding of human genetics and as a clinical diagnostic tool.

Researchers have developed various methods, technologies, and techniques for SNP genotyping, including high-throughput options. SNP genotyping falls broadly into two categories: whole genome association and fine-mapping. SNP genotyping on a genome-wide basis is currently dominated by microarray analysis or massively parallel sequencing; however, assessment of a targeted selection of DNA is mainly done through PCR.

PCR-BASED METHODS

PCR-based methods are broadly categorized into two types:

1. **PCR** (Polymerase chain reaction) amplifies specific segments of DNA for easier analysis.
2. **PCR-inhibitory DNA** (PCD) targets non-specific DNA sequences.

HYBRIDIZATION-BASED METHODS

Hybridization-based methods detect SNPs using DNA probes.

SNP

SINGLE NUCLEOTIDE POLYMORPHISM

Genotyping

SNP

PCR-BASED METHODS

HYBRIDIZATION-BASED METHODS

HIGH-THROUGHPUT SEQUENCING

Next-generation and third-generation sequencing technologies and sequencing-throughput technologies are well-suited for SNP genotyping for specific genomic regions. Several methods for SNP genotyping have been developed, including single nucleotide polymorphism (SNP)-specific genotyping by sequencing (SNaPseq) and genotyping by sequencing (GBS).

DRUGDISCOVERYNEWS.COM

DDN's new Feature Folds.

Take your posters to the next level with DDN's new Feature Folds.

These extra-large pull-out inserts feature a poster that spans two tabloid-sized pages, a full-page Q&A article featuring an expert on your technology, and an insert cover page featuring title art above your advertisement.

Readers won't be able to resist pulling the inserts from the magazine and hanging them on their laboratory walls.
Explainer Articles

Ask and answer an important question for your clients with an explainer article. Each explainer breaks down a bigger picture question into smaller questions and provides a thorough answer written by scientists for scientists. Custom graphics bring the text to life and clear up even the most complicated subjects.

Sponsor an explainer article from our editorial calendar, or partner with us to create a custom one just for you!

HOW DO SCIENTISTS DETECT AND MEASURE MICROBIAL FUNCTIONS?

Scientists have long relied on next-generation sequencers to obtain different microbial species using diverse RNA sequencing and analyses. However, millions of copies of each ribosome are converted to transfer RNA, and the resulting transcriptome is not easy. Unlike human cells, prokaryotes not only measure microbial diversity, but also microbial function. Scientists have long relied on metagenomics to detect different microbial species in the human gut where they secrete bacteriocins. These microbial populations in the gut play significant roles in human health and disease. In contrast, microbiome research is critical.

HOW CAN RESEARCHERS APPLY METATRANSSCRIPTOMIC DATA TO DRUG DISCOVERY?

The microbiome consists of diverse populations of viruses, fungi, and bacteria. These microbes interact throughout the human body, and feed off each other, spreading bacteria from the same species may produce the same proteins. Similarly, scientists have long relied on metagenomics to detect different microbial species in the human gut where they secrete bacteriocins. These microbial populations in the gut play significant roles in human health and disease. In contrast, microbiome research is critical.

A MULTILAYERED APPROACH

To comprehensively profile the microbiome, researchers leverage multi-omics techniques. Combining metatranscriptomics with metabolomics provides insights into the unique physiological states of different bacterial species. This allows researchers to identify metabolic pathways that are active in the gut, as well as bacterial communities that are key to maintaining a healthy gut microbiome. These techniques are also useful for understanding the role of the microbiome in health and disease.

References:
Science Milestones detail the fascinating key events leading up to fundamental advances in life science research. Select from the topics on our editorial calendar, which are available for sponsorship, or bring us your own topic. We’ll do the research and present our readers with insights into your key technologies, methods, or equipment in a format that they want to read.
Posters

Sponsor a planned poster, or schedule your own!

Posters are perfect for showcasing a technique, highlighting a new product, explaining complex scientific concepts, or detailing a new method. Pair your poster with a lead generation or promotional program to maximize its reach.

Mitochondria

Mitochondria are organelles in the cell that produce most of the energy powering the cell.

LARGE-SCALE TRANSFECTION FOR VIRUS PRODUCTION

1. Scientists coat the plasmids, which have a net negative charge, with different types of transfection reagents that condense and confer a net positive charge. When combined with DNA, lipid-polymer nanoparticles (LPNPs) facilitate entry into viral production cells, usually HEK 293 cells, so that expression and assembly of the viral vectors can be achieved.

2. The viral vectors are collected from the cell culture medium and further purified to ensure they meet the necessary titer and quality requirements. In the case of ex vivo gene therapy, the viral vector is applied directly to the patient.

3. Shear stress to maximize complex integrity.

DDN delivers large-scale transfection for virus production.

- **Materials**
 - DNA mass
 - Lipopolyplexes
 - Helper plasmids required for viral vector packaging and expression of therapeutic gene

- **Delivery of complexes to cells**
 - Seeding and expanding cells
 - Mid-scale: 2 mg DNA, 3 ml lipopolyplexes, 1 L bioreactor
 - Pilot scale: 200 mg DNA, 300 ml lipopolyplexes, 100 L bioreactor
 - Large-scale: 200 µg DNA, 1 L lipopolyplexes, 1000 L bioreactor

- **Considerations for large-scale transfection:**
 - Helper plasmids required for viral vector packaging and expression of therapeutic gene per dose. That means that each 100L bioreactor could produce 10-1000 transduction units.

- **Therapy**
 - Cell therapy: 8-1010 transduction units are needed per dose, which means that each 100L bioreactor could produce 10-1000 transduction units.

- **Spatial Considerations**
 - Production cells, usually HEK 293 cells, so that expression and assembly of the viral vectors can be achieved.

- **Animal-free, fully synthetic formulations**

- **Controlled transfection**
 - Spatial
 - Flow Cytometry

- **Therapeutic vectors**
 - The viral vectors can be collected from the cell culture medium and further purified to ensure they meet the necessary titer and quality requirements. In the case of ex vivo gene therapy, the viral vector is applied directly to the patient.

- **Shear stress to maximize complex integrity.**
Webinars

Explore the list of webinars we have planned for 2024 and support those that reach your customers. Alternatively, connect with us to develop a custom event tailored precisely to your needs.

Our 2024 multisponsored webinars focus on the following topics:
Custom Articles

<table>
<thead>
<tr>
<th>Advertorials</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGN's custom advertorial offerings are unique in the industry. We will tell your story and spread your message in a narrative engaging style that matches our various print content types. Select from a news story, a Q&A profile article, a traditional advertorial, or another article type that resonates with you.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research Product Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>The research product highlights section of our website gives readers quick, digestible information about tools and reagents that help advance science. Simply choose a product you would like to highlight, and we’ll do the rest.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research Paper Summaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would you like to bring attention to key discoveries made using your products? Bring us a peer-reviewed paper, and we’ll create a research paper summary that presents the key methods and results in an accessible and engaging style.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>White Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>We’ll work with you to provide all of the information necessary for your potential customers to make informed decisions about the tools and reagents they need to purchase for their upcoming experiments in a custom white paper.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Custom Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>We’ll talk with you to understand your goals, messaging, and audience, and then create just the content you need to educate your customers.</td>
</tr>
</tbody>
</table>
In this new podcast series, we cover the latest advancements in drug discovery by speaking directly with the scientists leading the efforts. Sponsor an episode from our 2024 calendar!

<table>
<thead>
<tr>
<th>January</th>
<th>Metabolism</th>
<th>July</th>
<th>Cardiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>Genomics</td>
<td>August</td>
<td>Infectious Disease</td>
</tr>
<tr>
<td>March</td>
<td>Women’s Health</td>
<td>September</td>
<td>Machine Learning and AI</td>
</tr>
<tr>
<td>April</td>
<td>Cancer</td>
<td>October</td>
<td>Gene Therapy</td>
</tr>
<tr>
<td>May</td>
<td>Ophthalmology</td>
<td>November</td>
<td>Neuroscience</td>
</tr>
<tr>
<td>June</td>
<td>Microbiology</td>
<td>December</td>
<td>Antibody Drugs</td>
</tr>
</tbody>
</table>

We’ll speak with your product managers, customers, or key opinion leaders to update our audience on the latest and greatest scientific technologies, products, and breakthroughs. Our podcast products begin with a kickoff call. We’ll take it from there to conduct the interview, prepare the script and audio files, and promote the podcast to our audience!
2024 Editorial and Multi-Sponsored Calendar

<table>
<thead>
<tr>
<th>Month</th>
<th>Print</th>
<th>Posters</th>
<th>Explainers</th>
<th>Milestones</th>
<th>Webinars</th>
<th>Technology Guides</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>Cell Biology, Immunotherapy, Bioengineering, Autoimmune Disease</td>
<td>Cancer</td>
<td></td>
<td></td>
<td>Machine Learning and Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Immunology, Antibody Drugs</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>March</td>
<td>Cancer, Precision Medicine, Microbiology, Antibody Drugs, Dermatology</td>
<td>Immunology and Flow Cytometry</td>
<td>Cancer</td>
<td>Vaccines</td>
<td>Proteomics</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Immunotherapy</td>
<td>Genomics and Sequencing</td>
</tr>
<tr>
<td>May</td>
<td>Cell Therapy, RNA, Aging, Protein Drugs</td>
<td></td>
<td>Immunology</td>
<td>Proteomics</td>
<td>Cell Therapy</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tissue Engineering, Autoimmune Disease, Proteomics</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>Chemical Biology, Biologics, Spatial Biology, Ophthalmology, Clinical Trials</td>
<td>Spatial Biology</td>
<td>Cancer</td>
<td></td>
<td>Pharmacogenomics</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Infectious Disease, 3D Cell Culture</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>Neuroscience, Infectious Disease, Drug Formulation, Biomarkers</td>
<td>Proteomics</td>
<td>Neuroscience</td>
<td></td>
<td>Multimics</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diagnostics, Cell Therapy, CRISPR</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>Gene Therapy, Hematology, Diagnostics, Rare Diseases, Stem Cells</td>
<td>Gene Therapy</td>
<td>Stem Cells</td>
<td>Cell Therapy</td>
<td>Microbiome Biomarkers</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Genetic Engineering</td>
<td></td>
</tr>
</tbody>
</table>
Cancer

PROTACs for Cancer

Proteolysis targeting chimeric (PROTAC) technology allows researchers to tag specific proteins for degradation by the cell. PROTAC technology may overcome some of the shortcomings of traditional cancer drugs. This poster will introduce the mechanisms and applications of PROTACs in cancer therapy.

Keywords: PROTAC, E3 ubiquitin ligase, protein degradation, ubiquitin-proteasome system, cancer therapy

Machine Learning and Artificial Intelligence

AI Drug Discovery

Artificial intelligence and machine learning streamline the drug discovery process, from drug design to early safety assessments. This webinar will feature ways such as identifying drug targets and predicting drug properties in which AI-based computational approaches facilitate all stages of drug discovery.

Keywords: artificial intelligence, machine learning, computational biology, drug discovery

Immunology

Targeting Epithelial Immune Memory to Treat Reinfections

As the first line of defense for the body’s organs, epithelial cells learn from previous infections or exposures to allergens. In this webinar, experts will discuss how to target epithelial memory to fight infectious diseases.

Keywords: epithelia, immune cells, infectious diseases, inflammation, reinfection, respiratory tract infection

Antibody Drugs

Advancing Bispecific Antibodies

Bispecific antibodies offer a novel approach for targeting multiple antigens simultaneously and enhancing treatment precision across various diseases, including cancer and autoimmune disorders. In this webinar, experts will shed light on the most recent developments in bispecific antibody design, engineering, and application.

Keywords: bispecific antibodies, immunotherapy, antibody engineering, monoclonal antibodies, antibody design

Mass Spectrometry

A Technology Guide for TMT Proteomics

Tandem mass tags (TMT) are powerful tools for proteomics that rely on isobaric chemical tags with different mass-to-charge ratios for multiplexed sample analysis. This technique enables concurrent comparison of multiple conditions, providing insights into differential protein expression, post-translational modifications, and protein interactions within complex biological samples. This Technology Guide will explore the fundamental principles and applications of TMT and discuss the considerations and best practices for TMT experiments.

Keywords: mass spectrometry, tandem mass spectrometry, quantification, post-translational modifications, tandem mass tags, isobaric labeling, proteomics

<table>
<thead>
<tr>
<th>Month</th>
<th>Print</th>
<th>Posters</th>
<th>Explainers</th>
<th>Milestones</th>
<th>Webinars</th>
<th>Technology Guides</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td></td>
<td>Cell Biology, Immunotherapy, Bioengineering, Autoimmune Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROTACs for Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteolysis targeting chimeric (PROTAC) technology allows researchers to tag specific proteins for degradation by the cell. PROTAC technology may overcome some of the shortcomings of traditional cancer drugs. This poster will introduce the mechanisms and applications of PROTACs in cancer therapy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keywords: PROTAC, E3 ubiquitin ligase, protein degradation, ubiquitin-proteasome system, cancer therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine Learning and Artificial Intelligence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AI Drug Discovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Artificial intelligence and machine learning streamline the drug discovery process, from drug design to early safety assessments. This webinar will feature ways such as identifying drug targets and predicting drug properties in which AI-based computational approaches facilitate all stages of drug discovery.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keywords: artificial intelligence, machine learning, computational biology, drug discovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immunology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Targeting Epithelial Immune Memory to Treat Reinfections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>As the first line of defense for the body’s organs, epithelial cells learn from previous infections or exposures to allergens. In this webinar, experts will discuss how to target epithelial memory to fight infectious diseases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keywords: epithelia, immune cells, infectious diseases, inflammation, reinfection, respiratory tract infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antibody Drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advancing Bispecific Antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bispecific antibodies offer a novel approach for targeting multiple antigens simultaneously and enhancing treatment precision across various diseases, including cancer and autoimmune disorders. In this webinar, experts will shed light on the most recent developments in bispecific antibody design, engineering, and application.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keywords: bispecific antibodies, immunotherapy, antibody engineering, monoclonal antibodies, antibody design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Immunology and Flow Cytometry

Antibody Discovery Using Flow Cytometry

Approximately 20 percent of newly approved drugs are monoclonal antibodies. For many of these, flow cytometry played an important role in their development. Researchers rely on flow cytometry to identify the best antibody clones that bind to target antigens. This poster will detail the role of flow cytometry in antibody discovery.

Keywords: antibodies, monoclonal antibodies, flow cytometry, immunology, cell sorting, cell surface proteins

Cancer

How Does Cancer Drug Resistance Develop?

Drug resistance is a major cause of cancer treatment failure. Although a treatment may be effective initially, cancer cells can adapt to the drug, develop resistance, and regrow. This Explainer Article will explore the various underlying mechanisms driving cancer drug resistance and how scientists plan to overcome and prevent resistance to enhance treatment effectiveness.

Keywords: drug resistance, cancer, microRNA, epigenetics, tumor heterogeneity, tumor microenvironment

Vaccines

History of the HPV Vaccine

The human papillomavirus (HPV) vaccine ranks among three approved cancer vaccines. The history of its development stretches from the earliest documented cases of cervical cancer in the 15th century to 21st century technology that uses noninfectious virus-like particles. This Science Milestone article will detail the key moments in history that laid the landscape for the HPV vaccine, which is 90 percent effective at preventing HPV cancers, including cervical, vaginal, vulvar, anal, penile, and throat cancer.

Keywords: vaccines, cancer, noninfectious virus-like particles, virology

Proteomics

Predictive and Prognostic Biomarker Discovery

Proteomics approaches provide valuable information on the identities, expression levels, and modifications of proteins. Scientists use this information to identify biomarkers, assess disease prognosis, and identify potential responders for specific therapies. This webinar will explore proteomic approaches, such as mass spectrometry-based technologies and others, to identify biomarkers that can predict treatment outcomes for patients with cancer, Alzheimer’s disease, and others.

Keywords: proteomics, biomarker discovery, predictive biomarkers, mass spectrometry

Immunotherapy

Combination Therapy for Cancer Using Immunotherapy and Viruses

Immune checkpoint inhibitors activate the immune system against cancer cells, but not every patient responds to this type of therapy. Oncolytic viruses can kill cancer cells directly and make cancer cells respond to immune checkpoint inhibitors. This webinar will showcase recent advancements in this combination therapy for cancer and highlight the mechanisms that make it effective.

Keywords: oncolytic viruses, immune checkpoint inhibitor, cancer, tumor microenvironment, immunotherapy

Genomics and Sequencing

A Technology Guide for Shotgun Metagenomics

Microbiome studies rely on 16S ribosomal RNA sequencing to identify microbes in a particular population. But sometimes knowing the identity of a microbe is not enough. That’s where shotgun metagenomics steps in. Metagenomics reveals the genomic information of all organisms in a sample, giving scientists insight on how each organism functions within the group. This Technology Guide will explain how shotgun metagenomics works, introduce best practices, and provide expert advice on starting metagenomics studies.

Keywords: microbiome, metagenomics, shotgun sequencing, genomics, bacteria
Immunology

At What Age Does the Immune System Weaken?

As individuals age, the immune system’s function decreases. This can make older individuals more susceptible to infections and diseases. This Explainer Article will explore the effects of aging on various immune cell types and how they influence the risk for multiple disorders.

Keywords: immunosenescence, aging, infectious disease

Proteomics

Imaging Mass Cytometry: Seeing Proteins at the Single Cell Level

Imaging mass cytometry (IMC) combines aspects of mass spectrometry and cytometry to visualize and quantify different types of cells in tissue samples at a very high resolution. It uses metal-conjugated antibodies to simultaneously measure the expression and location of multiple proteins and other targets in a single tissue section. Scientists use IMC to study the intricacies of cancer microenvironments and to dissect their complex interplay with the immune system. This Science Milestone will explore the key advancements that led to its development.

Keywords: flow cytometry, mass spectrometry, tumor microenvironment, immunology, proteomics

Cell Therapy

The Promise of CAR Macrophages

Macrophages in the tumor microenvironment play a crucial role in promoting angiogenesis, facilitating tumor invasion, and mediating immunosuppression. Given their ability to infiltrate solid tumors and interact with various cellular components in the tumor microenvironment, researchers explore the use of chimeric antigen receptor (CAR) modified macrophages as potential therapeutics against solid tumors. In this webinar, experts will discuss the unique advantages of using macrophages for CAR therapy and the latest developments in their clinical utility.

Keywords: immune cells, chimeric antigen receptor, macrophage, tumors, immunotherapy, cancer, cell therapy, CAR macrophage

Tissue Engineering

Engineering 3D Brain Models

The lack of in vitro models that recapitulate neurodegenerative diseases has hindered new drug development for brain disorders. In recent years, there have been exciting developments in creating advanced 3D lab models that better mimic the brain’s environment. This webinar will explore recent progress in developing these 3D models, including neural organoids, neurospheroids, scaffold-based models, and 3D bioprinted models.

Keywords: 3D cell culture, neurodegeneration, drug development, organoid

Autoimmune Disease

Understanding Why Immune Systems Go Haywire

Autoimmune diseases now account for the third largest disease class in the United States after cancer and heart disease. While autoimmune diseases occur when the body attacks itself, why this happens largely remains a mystery. In this webinar, experts will explore the various mechanisms that cause the body to attack its own tissues and how they use this knowledge to treat and possibly prevent autoimmune diseases.

Keywords: autoimmune disease, immune system, lymphocytes, T cells, immune response

Proteomics

A Technology Guide for Bottom-up Proteomics

Bottom-up proteomics helps scientists to identify proteins and characterize their amino acid sequences and post-translational modifications. The approach involves proteolytic digestion of proteins prior to mass spectrometry analysis. It has been instrumental in uncovering biomarkers and elucidating protein interactions. This Technology Guide will explore the principles, techniques, and applications of bottom-up proteomics.

Keywords: mass spectrometry, proteomics, bioinformatics, post-translational modifications
Spatial Biology

Exploring Spatial Transcriptomics

Over the past few years, spatial transcriptomics has gained significant attention for its utility in understanding cellular dynamics and gene expression within their native spatial context. There are several different spatial transcriptomics technologies available, including microdissection, in situ hybridization, in situ sequencing, and in situ capturing. This poster will provide an overview of cutting-edge spatial transcriptomics methods.

Keywords: spatial biology, spatial transcriptomics, gene expression, cellular dynamics, transcriptome profiling, high-resolution imaging, single-cell analysis, in situ hybridization, in situ sequencing, microdissection, gene localization, tissue architecture

Cancer

Origins of Oncolytic Viral Therapy

This Science Milestone article will explore the history of oncolytic virus therapy, tracing back to early 20th-century observations of viral-induced tumor regression, progressing through genetic engineering and virology advancements that yielded targeted oncolytic viruses, and culminating in the clinical trials and 2015 FDA approval of T-Vec.

Keywords: cancer, infection, oncolytic viruses, immunotherapy, genetic engineering, immune activation, viral vector, adenovirus, herpesvirus, reovirus

Pharmacogenomics

Precision Pain Management

Individual patients respond differently to the same pain medications. The same dose may result in inadequate pain control for one patient and overmedication and side effects for another. Researchers studying pharmacogenetics for pain management identify genes related to drug receptors, transporters, and metabolizing enzymes that may help explain these differences and develop more precision medicine-based approaches to pain management. This webinar will present the latest pharmacogenomics research for pain management drugs.

Keywords: pain, opioids, personalized medicine, risk assessment, side effects

Infectious Disease

Overcoming Infectious Disease Drug Resistance

Infectious diseases such as pneumonia, malaria, and tuberculosis claim thousands of lives yearly around the world. Treatments for these diseases exist, but drug resistance is a problem that contributes to their spread. This webinar will explore recent advancements in understanding the mechanisms of infectious disease drug resistance and the latest strategies for overcoming them.

Keywords: infectious disease, antibiotic resistance, microbiology, virology, parasitology

3D Cell Culture

A Technology Guide for 3D Cell Culture

Cells exist in living organisms in complicated multidimensional structures occupied by other cell types, supported by layers of extracellular matrix, and vascularized by vessels. 3D cell culture offers the opportunity to model these dynamic in vivo architectures more closely, but for many scientists new to this area of research, getting started is not easy. This Technology Guide will break down the key considerations for starting a 3D cell culture experiment, introduce the tools and reagents necessary for success, and provide expert troubleshooting advice.

Keywords: cell culture, 3D cell culture, organoids, scaffolds, scaffold-free cell suspension, microfluidics, microenvironment, cell culture media, spheroids, extracellular matrix, transcription factors
September

Print

- Neuroscience, Infectious Disease, Drug Formulation, Biomarkers

Posters

Proteomics

Uncovering Tumor Antigens

With research on CAR T cells and antibody-drug conjugates for cancer surging, there is a strong need to identify reliable and specific tumor antigens for these therapies to target. This poster will describe the approaches scientists take to uncover high-fidelity tumor antigens, such as next generation sequencing of the whole exome, transcriptome, proteome, and ligandome coupled with chromatography-mass spectrometry-based detection methods.

Keywords: tumor, antigen, cancer, next-generation sequencing, exome, transcriptome, proteome, ligandome, chromatography, mass spectrometry

Explainers

Neuroscience

How Does the Vagus Nerve Regulate the Gut-brain Connection?

The gut-brain axis is a bidirectional communication system connecting the gut and the brain. It involves the vagus nerve, neurotransmitters, hormones, immune cells, and the gut microbiome, and influences brain function and mental health. This Explainer Article will explore the intricate network of the gut-brain axis and its implications in developing novel therapies for targeting gut and brain health.

Keywords: gut-brain axis, microbiome, central nervous system, dysbiosis

Milestones

Webinars

Multiomics

Liquid Biopsies: Catching Cancer in a Drop of Blood

Liquid biopsies offer disease monitoring by exploring diverse cancer-related components in the blood, such as circulating tumor DNA, circulating tumor cells, circulating tumor RNAs, tumor-associated proteins, and tumor-derived extracellular vesicles. By leveraging multiomics tools, researchers analyze various biomolecules and integrate genomics, transcriptomics, proteomics, and other -omics data, enabling early and precise cancer detection. This webinar will discuss the progress of multiomics-based liquid biopsies for cancer.

Keywords: cancer, cancer genomics, biomarker, ctDNA, liquid biopsy

Technology Guides

Diagnostics

Detecting Stress Related Disorders

Disrupted stress hormones contribute to endocrine conditions, heart disease, obesity, and cancer. Measuring hormonal changes might be key to identifying and monitoring disease. This webinar will feature new approaches for high-resolution monitoring of stress hormones as a promising pathway to diagnosis.

Keywords: endocrinology, hormones, heart disease, obesity, cancer, diagnostic, endocrine conditions

Cell Therapy

Allogeneic Cell Therapy for Cancer

Cell therapies typically involve a tailored process of extracting a patient’s cells, genetically modifying them, and then returning them to the patient. Allogeneic cell therapies promise the potential to accelerate that process by using off-the-shelf cells donated by healthy individuals and engineered to reduce immunogenicity. This webinar will feature the latest research on off-the-shelf cell therapies for cancer using various immune cell types.

Keywords: T cells, cell therapy, immunology, natural killer cells, macrophages, genetic engineering, cancer

CRISPR

A Technology Guide for CRISPR Screening

CRISPR-based screening takes advantage of the CRISPR/Cas9 gene-editing system to identify genes that are critical for disease processes, potentially leading to the development of new therapeutic strategies. This Technology Guide will explain how CRISPR-based screens work and provide guidance on how to choose and implement the best CRISPR screen to meet experimental needs.

Keywords: CRISPR, genomic screening, functional genomics

October

Print

- Neuroscience, Infectious Disease, Drug Formulation, Biomarkers

Posters

Explainers

Milestones

Webinars

Technology Guides
Gene Therapy

Gene Therapy for Organ Transplants

Gene therapy has promising uses in addition to genetic disease treatments, including introducing genes that prevent an immune response that leads to organ rejection after an organ transplant. This poster will explore the use of gene therapy for improving organ transplant outcomes, including reducing the need for immunosuppression and using genetic vectors to improve organ quality before transplant.

Keywords: AAV, gene therapy, organ transplant, immunosuppression

Stem Cells

What is Mesenchymal Stem Cell Therapy?

Mesenchymal stem cell therapy represents a promising realm within regenerative medicine. This approach involves the transplantation of mesenchymal stem cells into patients, harnessing the unique ability of these cells to transform into a diverse range of specialized cell types. This Explainer Article will explore the science behind mesenchymal stem cell therapy, its versatile applications, and novel strategies to overcome the development challenges of mesenchymal stem-cell-based treatments.

Keywords: stem cells, iPSCs, ESCs, regenerative medicine, cell differentiation, cell therapy

Cell Therapy

The First Bone Marrow Transplant

Bone marrow transplants have saved lives for nearly a century. This Science Milestone will trace the origins, development, and refinement of therapeutic hematopoietic stem cell transplants.

Keywords: stem cells, cell therapy, hematopoietic stem cells, bone marrow transplant, hematology

Microbiome Biomarkers

Microbiome Profiling for Disease Biomarkers

The human microbiome modulates important metabolic and immune processes. It is a valuable source of biomarkers for various health conditions, disease states, and treatment responses. In recent years, scientists have used metagenomics tools to identify many bacteria and bacterial products that correlate with disease. This webinar will discuss the emerging role of the gut microbiome as a valuable source of biomarkers for disease diagnostics and precision medicine.

Keywords: biomarkers, metagenomics, microbial metabolites, microbiome

Genetic Engineering

Leveraging Molecular Scissors for Neurological Disorders

Genome editing holds immense potential for addressing central nervous system (CNS) disorders by precisely modifying genetic elements that contribute to these conditions. This technique offers the opportunity to correct mutations, regulate gene expression, and develop innovative therapies tailored to complex diseases. In this webinar, experts will share their strategies for leveraging genome editing tools like CRISPR-Cas9 to target genetic factors associated with CNS disorders.

Keywords: CRISPR/Cas9, central nervous system, neurological disorders, genome editing, ZFs, TALEs
Our website holds a number of high impact banner and traditional positions, where you can attract the attention of our broad audience.

Banner Ads

Let us customize your banner for you!

(High impact banner)

Leaderboard (ROS)
970x90, 728x90, 320x50 mobile

Middle Banner (ROS)
728x90 & 320x50 mobile

Boombox A (ROS)
300x250

Boombox B (ROS)
300x250

Boombox C (ROS)
300x250

Bottom Banner (ROS)
728x90 & 320x50 mobile

Anchor Banner (ROS)
1000x60 & 320x50 mobile
What I really like about DDN’s newsletter is that there is such a wide range of fascinating and astonishing topics that are covered.”

- Researcher, CDC
Our DDN Dose targeted newsletter series brings the stories behind the latest exciting scientific advances directly to readers who have specifically expressed interest in that topic. We include news, stories, features, podcasts, infographics, profiles, and more. We will also highlight a piece of your content in the newsletter and send readers directly back to your web page.

1. Choose a topic.
- Cancer
- Cell Biology
- Cell Therapy
- Diagnostics
- Disease Models
- Drug Development
- Gene Therapy
- Genetics
- Genomics
- Immunology
- Immunotherapy
- Infectious Disease
- Metabolic Disease
- Microbiology
- Neuroscience
- Stem Cells
- Tools and Techniques
- Vaccines

2. Choose a month.

3. Send us one banner ad.

4. Send us a link to a piece of educational content on your website that you would like to share with our readers. Our custom content team will create a title and teaser text to entice our readers to click through to your content.

“I’ve been a huge fan of your newsletter since I discovered it back in 2018! Please keep sending it my way; it’s always a highlight of my day!”

- Lab Manager, Texas Tech University

Powering up cells to power down corneal disease
Injecting healthy, exogenous mitochondria into the eye could combat mitochondrial dysfunction and cell death in Fuchs endothelial corneal dystrophy.

Researchers connect autism symptoms with mitochondrial morphology

Connecting researchers and patients to cure mitochondrial diseases

Discovering effective CAR T cell therapies faster
Developing safe and effective chimeric antigen receptor (CAR) T cell therapy involves a multistep process and careful CAR T cell refinement. Browse this webpage from Cel Signaling Technology to explore advanced research tools that facilitate CAR T research and development, from target identification and CAR T cell characterization to patient response assessment.
Opportunities for Lead Generation

Position your ad within the pages of our inspiring 100% original editorial content.

For each print issue, we offer an opportunity to provide added value through a limited number of Print Ad Experience Studies to determine a print ad’s attention-getting ability, believability, and information value.

If you provide a qualifying question for this print Ad Experience Study, our readers will be able to request direct contact from your company.

“Your publication is one of those that I look forward to receiving, and usually bring with me on the plane where I can enjoy reading through it.”

- CEO, Epredia

Print subscribers 35,000
Print Edition Circulation 15,000
Digital/International Edition Circulation 20,000

Receive up to 49 leads per study!
<table>
<thead>
<tr>
<th>Month</th>
<th>Print Section</th>
<th>Events & Bonus Distribution</th>
<th>Ad Close</th>
<th>Material Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>Cell Biology, Immunotherapy, Bioengineering, Autoimmune Disease</td>
<td>ASCB: December 2 - 6 Scope: February 11 - 14 SLAS: February 3 - 7</td>
<td>13-Nov-2023</td>
<td>20-Nov-2023</td>
</tr>
<tr>
<td>March</td>
<td>Cancer, Precision Medicine, Microbiology, Antibody Drugs, Dermatology</td>
<td>TriCon: March 26 - 28 Pharma USA: March 26 - 27 AACR: April 5 - 10</td>
<td>8-Jan-2024</td>
<td>15-Jan-2024</td>
</tr>
<tr>
<td>May</td>
<td>Cell Therapy, RNA, Aging, Protein Drugs</td>
<td>PEGS: May 13 - 17 Bio-IT World: May 14 - 17 ASMS: June 2 - 6</td>
<td>11-Mar-2024</td>
<td>18-Mar-2024</td>
</tr>
<tr>
<td>July</td>
<td>Biologics, Spatial Biology, Ophthalmology, Clinical Trials</td>
<td>AACC: July 28 - Aug 1</td>
<td>13-May-2024</td>
<td>20-May-2024</td>
</tr>
<tr>
<td>November</td>
<td>Gene Therapy, Hematology, Diagnostics, Stem Cells</td>
<td>ASHG: November 5 - 9 ASCB: December 14 - 18</td>
<td>9-Sep-2024</td>
<td>16-Sep-2024</td>
</tr>
</tbody>
</table>
Tech Notes

Announce your new product or draw eyes to an established one by featuring it in the Tech Notes section in each issue of *DDN*. Simply send us a link to a technology you would like highlighted in print, and our team will take it from there to showcase your product to our readers each month.

Fishing for Safer Nanomedicine

To pinpoint nanomaterials that show toxic effects in biological systems, researchers rely on the petite but powerful zebrafish.

BY SARAH ANDERSON, PHD

Scientists have come to appreciate that not all nanomaterials are inert bystanders to biological systems. Disruption of any of the biological structures. Disruption of any of the biological defects in their organs and other bodily functions, looking for mortality or morphological differences. This is where the researchers monitor the nanomaterial’s interference, for example, with some other function that we just thought it was more important to take the claims off the table and conduct it in cells and embryos, the fish are a mix that are easy to study. If these materials have a negative interaction, for example, with some other process that you can model in the individual cell, at least you would see it,” Tanguay said. For example, the researchers monitor the nanomaterial’s effects on the embryonic development, looking for mortality or morphological changes in their organs and other bodily structures. Disruption of any of the biological structures is generally considered an indication of toxicity. This is important to keep in mind when interpreting the results of studies using zebrafish as a model system because it allows scientists to evaluate how well the findings from these studies translate to human health and disease. Zebrafish are a valuable model system because they share many similarities with humans, including a developing nervous system and immune system. This makes them an ideal model for studying the effects of nanomaterials on a range of biological processes and diseases. However, it is important to note that zebrafish are not a substitute for animal or human studies and that additional research is needed to fully understand the potential impacts of nanomaterials on human health. Despite these limitations, the use of zebrafish as a model system has proven to be a valuable tool for the development of safer nanomaterials and for the advancement of nanomedicine.
Advertising Inquiries

NORTHEAST, SOUTHEAST, MID ATLANTIC, EASTERN CANADA, EMEA, ASIAPAC

Anna Smith
ACCOUNT EXECUTIVE
631-626-7404
asmith@drugdiscoverynews.com

NORTHWEST, MIDWEST, SOUTHWEST, WESTERN CANADA

Ryan King
ACCOUNT EXECUTIVE
773-414-9292
king@drugdiscoverynews.com

Dana Sizing
SALES DIRECTOR
315-956-0231
dsizing@drugdiscoverynews.com

Advertising Specifications

Alex Ruffle
Sales & Marketing Coordinator
647-867-5942
aruffle@drugdiscoverynews.com

Editorial Inquiries

Kristie Nybo, PhD
Group Content Director
347-556-6074
nybo@drugdiscoverynews.com
Production Specs with Bleeds

Tab Page
- Bleed: 10.875" x 14.125"
- Trim: 10.625" x 13.875"

Tab Spread
- Bleed: 21.5" x 14.125"
- Trim: 21.25" x 13.875"

1/2 Tab Page Horizontal
- Bleed: 10.875" x 7.1875"
- Trim: 10.625" x 6.9375"

1/2 Tab Page Vertical
- Bleed: 5.5" x 14.125"
- Trim: 5.25" x 13.875"

1/3 Tab Page Horizontal
- Bleed: 10.875" x 5.625"
- Trim: 10.625" x 5.375"

1/3 Tab Page Vertical
- Bleed: 3.5625" x 14.125"
- Trim: 3.3125" x 13.875"